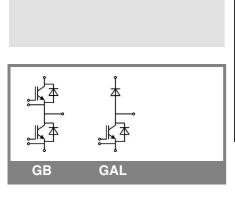


Trench IGBT Modules


SKM 400GB176D SKM 400GAL176D

Features

- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- AC inverter drives
- mains 575 750 V AC
- Public transport (auxiliary syst.)
- Wind power

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT				•	
V_{CES}	T _j = 25 °C T _i = 150 °C		1700	V	
I _C	T _j = 150 °C	T _c = 25 °C	430	Α	
		T_c = 80 °C	310	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α	
V _{GES}			± 20	V	
t _{psc}	$V_{CC} = 1200 \text{ V}; V_{GE} \le 20 \text{ V};$	T _j = 125 °C	10	μs	
	V _{CES} < 1700 V				
Inverse					
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	440	Α	
		T _c = 80 °C	300	Α	
I_{FRM}	I _{FRM} =2xI _{Fnom}		600	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	2200	Α	
Freewh	eeling Diode				
I _F	T _j = 150 °C	T _{case} = 25 °C	440	Α	
		T _{case} = 80 °C	300	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α	
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	2200	Α	
Module			•		
$I_{t(RMS)}$			500	Α	
T _{vj}			- 40 + 150	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics T _{case} =		25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 12 \text{ mA}$		5,2	5,8	6,4	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	$T_j = 25 ^{\circ}C$			4	mA
V_{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		3,3	4,2	mΩ
		T _j = 125°C		5,2	6	mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V			2	2,4	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,45	2,9	V
C _{ies}				19,8		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,1		nF
C _{res}				0,88		nF
Q_G	V _{GE} = -8V+15V			2500		nC
t _{d(on)}				330		ns
t _r	$R_{Gon} = 4 \Omega$	V _{CC} = 1200V		55		ns
E _{on}	_	I _C = 300A		170		mJ
t _{d(off)}	$R_{Goff} = 4 \Omega$	T _j = 125 °C		880		ns
t _f		V _{GE} = ± 15V		145		ns
E _{off}				118		mJ
R _{th(j-c)}	per IGBT				0,075	K/W

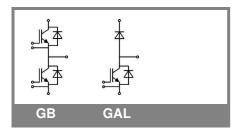
SEMITRANS[®] 3

Trench IGBT Modules

SKM 400GB176D SKM 400GAL176D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C


Typical Applications*

- AC inverter drives
- mains 575 750 V AC
- Public transport (auxiliary syst.)
- Wind power

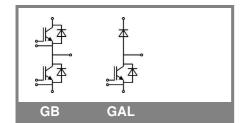
Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}$			1,7	1,9	V	
		$T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,8	2	V	
V_{F0}		T _j = 25 °C		1,2	1,4	V	
		T _j = 125 °C		0,9	1,1	V	
r _F		T _j = 25 °C		1,7	1,7	mΩ	
		T _j = 125 °C		3	3	mΩ	
I _{RRM}	I _F = 300 A	T _j = 125 °C		418		Α	
Q_{rr}	di/dt = 5800 A/μs			117		μC	
E _{rr}	V _{GE} = -15 V; V _{CC} = 1200 \	/		78		mJ	
$R_{th(j-c)D}$	per diode				0,125	K/W	
FWD							
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}$			1,7	1,9	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8	2	V	
V_{F0}		T _j = 25 °C		1,2	1,4	V	
		T _j = 125 °C		0,9	1,1	V	
r _F		T _j = 25 °C		1,7	1,7	V	
		T _j = 125 °C		3	3	V	
I _{RRM}	I _F = 300 A	T _j = 125 °C		418		A	
Q _{rr}	di/dt = 5800 A/µs			117		μC	
E _{rr}	V _{GE} = -15 V; V _{CC} = 1200 \	/		78		mJ	
R _{th(j-c)FD}	per diode				0,125	K/W	
Module						_	
L _{CE}				15	20	nΗ	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		$m\Omega$	
R _{th(c-s)}	per module				0,038	K/W	
M_s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

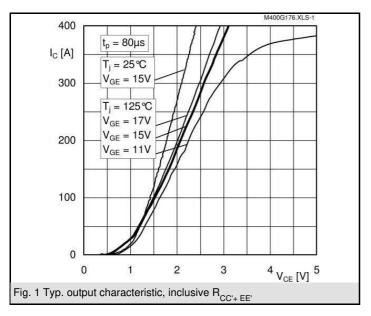
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

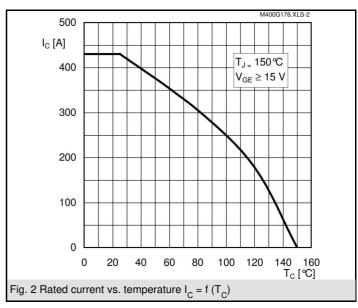
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

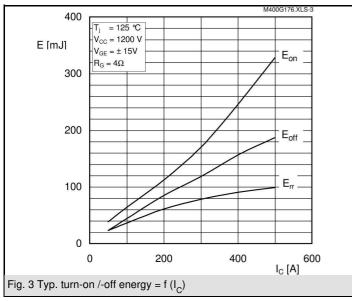
Trench IGBT Modules

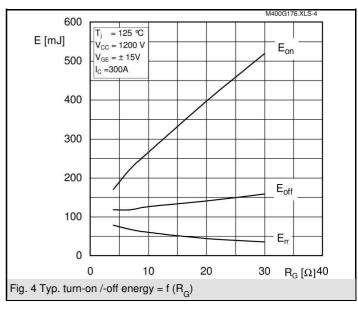
SKM 400GB176D SKM 400GAL176D

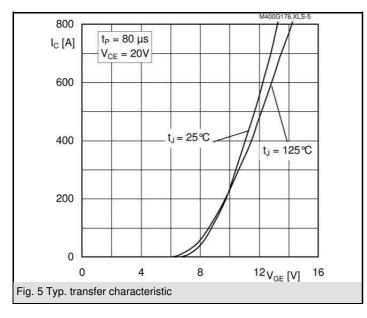

Features

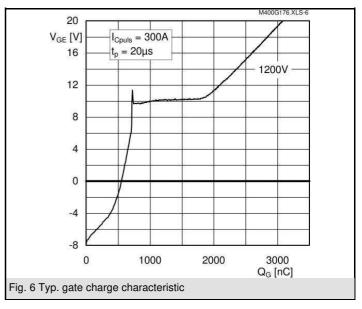

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

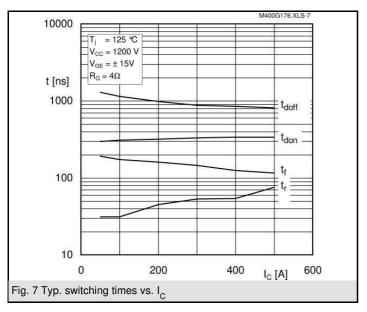

Typical Applications*

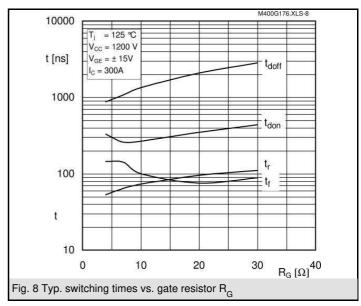

- AC inverter drives
- mains 575 750 V AC
- Public transport (auxiliary syst.)
- Wind power

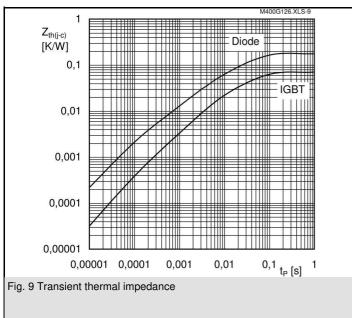

Z _{th}						
Symbol	Conditions	Values	Units			
Z,,,,,,,,,						
Z _{th(j-c)l}	i = 1	52	mk/W			
R _i R _i	i = 2	18	mk/W			
R _i	i = 3	4,6	mk/W			
R _i	i = 4	0,4	mk/W			
tau _i	i = 1	0,0569	s			
tau _i	i = 2	0,0122	s			
tau _i	i = 3	0,002	s			
tau _i	i = 4	0,02	s			
Z., ,, ,_						
Z _{th(j-c)D}	i = 1	85	mk/W			
Ri	i = 2	28	mk/W			
R _i	i = 3	10,5	mk/W			
R _i	i = 4	1,5	mk/W			
tau _i	i = 1	0,054	s			
tau _i	i = 2	0,0075	s			
tau _i	i = 3	0,0018	s			
tau _i	i = 4	0,0002	s			

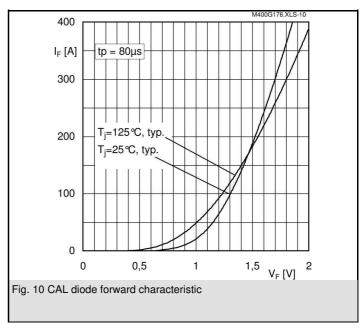


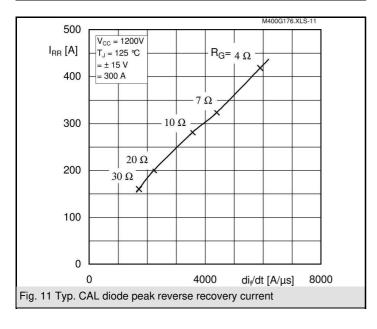


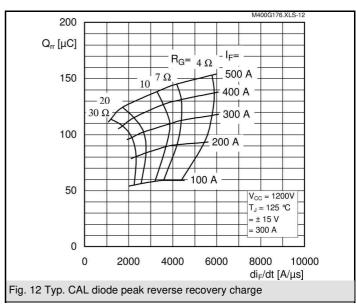


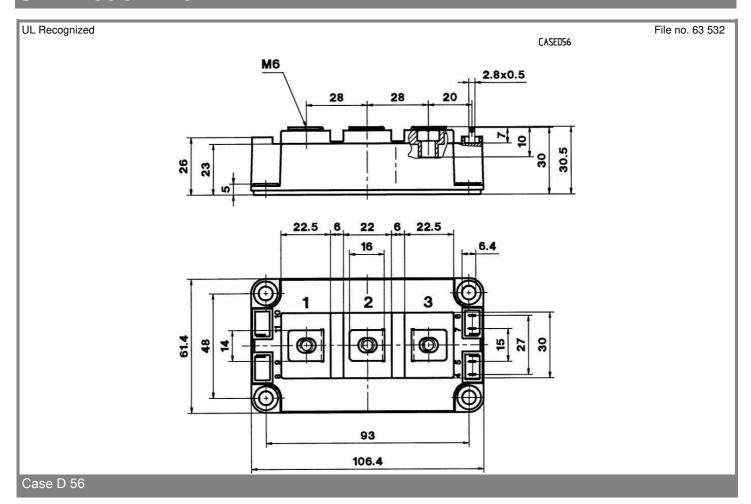


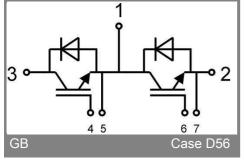


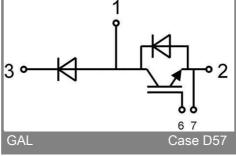












6 28-06-2010 GIL © by SEMIKRON